
13. 1. 8. Google C++ Style Guide

1/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Google C++ Style Guide

Revision 3.231

Benjy Weinberger
Craig Silverstein

Gregory Eitzmann
Mark Mentovai

Tashana Landray

Each style point has a summary for which additional
information is available by toggling the
accompanying arrow button that looks this way:
▽ . You may toggle all summaries with the big

arrow button:

▽ Toggle all summaries

Table of Contents

Header
Files

The #define Guard Forward Declarations
Inline Functions The -inl.h Files
Function Parameter Ordering
Names and Order of Includes

Scoping Namespaces Nested Classes
Nonmember, Static Member, and Global Functions
Local Variables Static and Global Variables

Classes Doing Work in Constructors Default Constructors
Explicit Constructors Copy Constructors
Structs vs. Classes Inheritance Multiple Inheritance
Interfaces Operator Overloading Access Control
Declaration Order Write Short Functions

Google-
Specific
Magic

Smart Pointers cpplint

Other C++
Features

Reference Arguments Function Overloading
Default Arguments
Variable-Length Arrays and alloca() Friends
Exceptions Run-Time Type Information (RTTI)
Casting Streams Preincrement and Predecrement
Use of const Integer Types 64-bit Portability
Preprocessor Macros 0 and nullptr/NULL sizeof
auto Boost C++11

Naming General Naming Rules File Names Type Names
Variable Names Constant Names Function Names
Namespace Names Enumerator Names
Macro Names Exceptions to Naming Rules

Comments Comment Style File Comments Class Comments
Function Comments Variable Comments
Implementation Comments
Punctuation, Spelling and Grammar TODO Comments
Deprecation Comments

Formatting Line Length Non-ASCII Characters Spaces vs. Tabs
Function Declarations and Definitions Function Calls
Conditionals Loops and Switch Statements
Pointer and Reference Expressions

13. 1. 8. Google C++ Style Guide

2/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Boolean Expressions Return Values
Variable and Array Initialization
Preprocessor Directives Class Format
Constructor Initializer Lists Namespace Formatting
Horizontal Whitespace Vertical Whitespace

Exceptions
to the
Rules

Existing Non-conformant Code Windows Code

Important Note

Dis play ing Hidden De ta ils in th is Gu ide

This style guide contains many details that are initially hidden from view.
They are marked by the triangle icon, which you see here on your left. Click

it now. You should see "Hooray" appear below.

Hooray! Now you know you can expand points to get more details. Alternatively,
there's an "expand all" at the top of this document.

Background

C++ is the main development language used by many of Google's open-source
projects. As every C++ programmer knows, the language has many powerful
features, but this power brings with it complexity, which in turn can make code
more bug-prone and harder to read and maintain.

The goal of this guide is to manage this complexity by describing in detail the
dos and don'ts of writing C++ code. These rules exist to keep the code base
manageable while still allowing coders to use C++ language features
productively.

Style, also known as readability, is what we call the conventions that govern our
C++ code. The term Style is a bit of a misnomer, since these conventions cover
far more than just source file formatting.

One way in which we keep the code base manageable is by enforcing
consistency. It is very important that any programmer be able to look at
another's code and quickly understand it. Maintaining a uniform style and
following conventions means that we can more easily use "pattern-matching" to
infer what various symbols are and what invariants are true about them.
Creating common, required idioms and patterns makes code much easier to
understand. In some cases there might be good arguments for changing
certain style rules, but we nonetheless keep things as they are in order to
preserve consistency.

Another issue this guide addresses is that of C++ feature bloat. C++ is a huge
language with many advanced features. In some cases we constrain, or even
ban, use of certain features. We do this to keep code simple and to avoid the
various common errors and problems that these features can cause. This
guide lists these features and explains why their use is restricted.

Open-source projects developed by Google conform to the requirements in
this guide.

Note that this guide is not a C++ tutorial: we assume that the reader is familiar
with the language.

Header Files

In general, every .cc file should have an associated .h file. There are some
common exceptions, such as unittests and small .cc files containing just a

13. 1. 8. Google C++ Style Guide

3/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

main() function.

Correct use of header files can make a huge difference to the readability, size
and performance of your code.

The following rules will guide you through the various pitfalls of using header
files.

The #define Gua rd

All header files should have #define guards to prevent multiple inclusion.
The format of the symbol name should be <PROJECT>_<PATH>_<FILE>_H_.

To guarantee uniqueness, they should be based on the full path in a project's
source tree. For example, the file foo/src/bar/baz.h in project foo should have
the following guard:

#ifndef FOO_BAR_BAZ_H_
#define FOO_BAR_BAZ_H_

...

#endif // FOO_BAR_BAZ_H_

Forwa rd Dec la ra tions

You may forward declare ordinary classes in order to avoid unnecessary
#includes.

Definition:

A "forward declaration" is a declaration of a class, function, or template without
an associated definition. #include lines can often be replaced with forward
declarations of whatever symbols are actually used by the client code.

Pros :

Unnecessary #includes force the compiler to open more files and
process more input.
They can also force your code to be recompiled more often, due to
changes in the header.

Cons :

It can be difficult to determine the correct form of a forward declaration in
the presence of features like templates, typedefs, default parameters,
and using declarations.
It can be difficult to determine whether a forward declaration or a full
#include is needed for a given piece of code, particularly when implicit
conversion operations are involved. In extreme cases, replacing an
#include with a forward declaration can silently change the meaning of
code.
Forward declaring multiple symbols from a header can be more verbose
than simply #includeing the header.
Forward declarations of functions and templates can prevent the header
owners from making otherwise-compatible changes to their APIs; for
example, widening a parameter type, or adding a template parameter
with a default value.
Forward declaring symbols from namespace std:: usually yields
undefined behavior.
Structuring code to enable forward declarations (e.g. using pointer
members instead of object members) can make the code slower and
more complex.
The practical efficiency benefits of forward declarations are unproven.

Decis ion:

13. 1. 8. Google C++ Style Guide

4/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

When using a function declared in a header file, always #include that
header.
When using a class template, prefer to #include its header file.
When using an ordinary class, relying on a forward declaration is OK,
but be wary of situations where a forward declaration may be insufficient
or incorrect; when in doubt, just #include the appropriate header.
Do not replace data members with pointers just to avoid an #include.

Always #include the file that actually provides the declarations/definitions you
need; do not rely on the symbol being brought in transitively via headers not
directly included. One exception is that myfile.cc may rely on #includes and
forward declarations from its corresponding header file myfile.h.

In line Func tions

Define functions inline only when they are small, say, 10 lines or less.

Definition:

You can declare functions in a way that allows the compiler to expand them
inline rather than calling them through the usual function call mechanism.

Pros :

Inlining a function can generate more efficient object code, as long as the
inlined function is small. Feel free to inline accessors and mutators, and other
short, performance-critical functions.

Cons :

Overuse of inlining can actually make programs slower. Depending on a
function's size, inlining it can cause the code size to increase or decrease.
Inlining a very small accessor function will usually decrease code size while
inlining a very large function can dramatically increase code size. On modern
processors smaller code usually runs faster due to better use of the instruction
cache.

Decis ion:

A decent rule of thumb is to not inline a function if it is more than 10 lines long.
Beware of destructors, which are often longer than they appear because of
implicit member- and base-destructor calls!

Another useful rule of thumb: it's typically not cost effective to inline functions
with loops or switch statements (unless, in the common case, the loop or
switch statement is never executed).

It is important to know that functions are not always inlined even if they are
declared as such; for example, virtual and recursive functions are not normally
inlined. Usually recursive functions should not be inline. The main reason for
making a virtual function inline is to place its definition in the class, either for
convenience or to document its behavior, e.g., for accessors and mutators.

The -in l.h Files

You may use file names with a -inl.h suffix to define complex inline
functions when needed.

The definition of an inline function needs to be in a header file, so that the
compiler has the definition available for inlining at the call sites. However,
implementation code properly belongs in .cc files, and we do not like to have
much actual code in .h files unless there is a readability or performance
advantage.

If an inline function definition is short, with very little, if any, logic in it, you should
put the code in your .h file. For example, accessors and mutators should
certainly be inside a class definition. More complex inline functions may also
be put in a .h file for the convenience of the implementer and callers, though if

13. 1. 8. Google C++ Style Guide

5/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

this makes the .h file too unwieldy you can instead put that code in a separate
-inl.h file. This separates the implementation from the class definition, while
still allowing the implementation to be included where necessary.

Another use of -inl.h files is for definitions of function templates. This can be
used to keep your template definitions easy to read.

Do not forget that a -inl.h file requires a #define guard just like any other
header file.

Function Pa ramete r Orde r ing

When defining a function, parameter order is: inputs, then outputs.

Parameters to C/C++ functions are either input to the function, output from the
function, or both. Input parameters are usually values or const references,
while output and input/output parameters will be non-const pointers. When
ordering function parameters, put all input-only parameters before any output
parameters. In particular, do not add new parameters to the end of the function
just because they are new; place new input-only parameters before the output
parameters.

This is not a hard-and-fast rule. Parameters that are both input and output
(often classes/structs) muddy the waters, and, as always, consistency with
related functions may require you to bend the rule.

Names and Orde r of Inc ludes

Use standard order for readability and to avoid hidden dependencies: C
library, C++ library, other libraries' .h, your project's .h.

All of a project's header files should be listed as descendants of the project's
source directory without use of UNIX directory shortcuts . (the current
directory) or .. (the parent directory). For example, google-awesome-
project/src/base/logging.h should be included as

#include "base/logging.h"

In dir/foo.cc or dir/foo_test.cc, whose main purpose is to implement or test
the stuff in dir2/foo2.h, order your includes as follows:

1. dir2/foo2.h (preferred location — see details below).
2. C system files.
3. C++ system files.
4. Other libraries' .h files.
5. Your project's .h files.

With the preferred ordering, if dir2/foo2.h omits any necessary includes, the
build of dir/foo.cc or dir/foo_test.cc will break. Thus, this rule ensures that
build breaks show up first for the people working on these files, not for innocent
people in other packages.

dir/foo.cc and dir2/foo2.h are often in the same directory (e.g.
base/basictypes_test.cc and base/basictypes.h), but can be in different
directories too.

Within each section the includes should be ordered alphabetically. Note that
older code might not conform to this rule and should be fixed when convenient.

For example, the includes in google-awesome-
project/src/foo/internal/fooserver.cc might look like this:

#include "foo/public/fooserver.h" // Preferred location.

#include <sys/types.h>
#include <unistd.h>
#include <hash_map>

13. 1. 8. Google C++ Style Guide

6/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

#include <vector>

#include "base/basictypes.h"
#include "base/commandlineflags.h"
#include "foo/public/bar.h"

Scoping

Names paces

Unnamed namespaces in .cc files are encouraged. With named
namespaces, choose the name based on the project, and possibly its

path. Do not use a using-directive.

Definition:

Namespaces subdivide the global scope into distinct, named scopes, and so
are useful for preventing name collisions in the global scope.

Pros :

Namespaces provide a (hierarchical) axis of naming, in addition to the (also
hierarchical) name axis provided by classes.

For example, if two different projects have a class Foo in the global scope,
these symbols may collide at compile time or at runtime. If each project places
their code in a namespace, project1::Foo and project2::Foo are now distinct
symbols that do not collide.

Cons :

Namespaces can be confusing, because they provide an additional
(hierarchical) axis of naming, in addition to the (also hierarchical) name axis
provided by classes.

Use of unnamed namespaces in header files can easily cause violations of the
C++ One Definition Rule (ODR).

Decis ion:

Use namespaces according to the policy described below. Terminate
namespaces with comments as shown in the given examples.

Unnamed Namespaces

Unnamed namespaces are allowed and even encouraged in .cc files, to
avoid runtime naming conflicts:

namespace { // This is in a .cc file.

// The content of a namespace is not indented
enum { kUnused, kEOF, kError }; // Commonly used tokens.
bool AtEof() { return pos_ == kEOF; } // Uses our namespace's EOF.

} // namespace

However, file-scope declarations that are associated with a particular
class may be declared in that class as types, static data members or
static member functions rather than as members of an unnamed
namespace.

Do not use unnamed namespaces in .h files.

Named Namespaces

Named namespaces should be used as follows:

13. 1. 8. Google C++ Style Guide

7/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Namespaces wrap the entire source file after includes, gflags
definitions/declarations, and forward declarations of classes from other
namespaces:

// In the .h file
namespace mynamespace {

// All declarations are within the namespace scope.
// Notice the lack of indentation.
class MyClass {
 public:
 ...
 void Foo();
};

} // namespace mynamespace

// In the .cc file
namespace mynamespace {

// Definition of functions is within scope of the namespace.
void MyClass::Foo() {
 ...
}

} // namespace mynamespace

The typical .cc file might have more complex detail, including the need to
reference classes in other namespaces.

#include "a.h"

DEFINE_bool(someflag, false, "dummy flag");

class C; // Forward declaration of class C in the global namespace.
namespace a { class A; } // Forward declaration of a::A.

namespace b {

...code for b... // Code goes against the left margin.

} // namespace b

Do not declare anything in namespace std, not even forward
declarations of standard library classes. Declaring entities in
namespace std is undefined behavior, i.e., not portable. To declare
entities from the standard library, include the appropriate header file.
You may not use a using-directive to make all names from a namespace
available.

// Forbidden -- This pollutes the namespace.
using namespace foo;

You may use a using-declaration anywhere in a .cc file, and in functions,
methods or classes in .h files.

// OK in .cc files.
// Must be in a function, method or class in .h files.
using ::foo::bar;

Namespace aliases are allowed anywhere in a .cc file, anywhere inside
the named namespace that wraps an entire .h file, and in functions and
methods.

// Shorten access to some commonly used names in .cc files.

13. 1. 8. Google C++ Style Guide

8/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

namespace fbz = ::foo::bar::baz;

// Shorten access to some commonly used names (in a .h file).
namespace librarian {
// The following alias is available to all files including
// this header (in namespace librarian):
// alias names should therefore be chosen consistently
// within a project.
namespace pd_s = ::pipeline_diagnostics::sidetable;

inline void my_inline_function() {
 // namespace alias local to a function (or method).
 namespace fbz = ::foo::bar::baz;
 ...
}
} // namespace librarian

Note that an alias in a .h file is visible to everyone #including that file, so
public headers (those available outside a project) and headers
transitively #included by them, should avoid defining aliases, as part of
the general goal of keeping public APIs as small as possible.

Nes ted Clas s es

Although you may use public nested classes when they are part of an
interface, consider a namespace to keep declarations out of the global

scope.

Definition:

A class can define another class within it; this is also called a member class.

class Foo {

 private:
 // Bar is a member class, nested within Foo.
 class Bar {
 ...
 };

};

Pros :

This is useful when the nested (or member) class is only used by the
enclosing class; making it a member puts it in the enclosing class scope
rather than polluting the outer scope with the class name. Nested classes can
be forward declared within the enclosing class and then defined in the .cc file
to avoid including the nested class definition in the enclosing class declaration,
since the nested class definition is usually only relevant to the implementation.

Cons :

Nested classes can be forward-declared only within the definition of the
enclosing class. Thus, any header file manipulating a Foo::Bar* pointer will
have to include the full class declaration for Foo.

Decis ion:

Do not make nested classes public unless they are actually part of the
interface, e.g., a class that holds a set of options for some method.

Nonmember , S ta tic Member , and Globa l Func tions

Prefer nonmember functions within a namespace or static member
functions to global functions; use completely global functions rarely.

13. 1. 8. Google C++ Style Guide

9/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Pros :

Nonmember and static member functions can be useful in some situations.
Putting nonmember functions in a namespace avoids polluting the global
namespace.

Cons :

Nonmember and static member functions may make more sense as members
of a new class, especially if they access external resources or have significant
dependencies.

Decis ion:

Sometimes it is useful, or even necessary, to define a function not bound to a
class instance. Such a function can be either a static member or a nonmember
function. Nonmember functions should not depend on external variables, and
should nearly always exist in a namespace. Rather than creating classes only
to group static member functions which do not share static data, use
namespaces instead.

Functions defined in the same compilation unit as production classes may
introduce unnecessary coupling and link-time dependencies when directly
called from other compilation units; static member functions are particularly
susceptible to this. Consider extracting a new class, or placing the functions in
a namespace possibly in a separate library.

If you must define a nonmember function and it is only needed in its .cc file,
use an unnamed namespace or static linkage (eg static int Foo() {...})
to limit its scope.

Loca l Va r iables

Place a function's variables in the narrowest scope possible, and initialize
variables in the declaration.

C++ allows you to declare variables anywhere in a function. We encourage you
to declare them in as local a scope as possible, and as close to the first use
as possible. This makes it easier for the reader to find the declaration and see
what type the variable is and what it was initialized to. In particular, initialization
should be used instead of declaration and assignment, e.g.

int i;
i = f(); // Bad -- initialization separate from declaration.

int j = g(); // Good -- declaration has initialization.

Note that gcc implements for (int i = 0; i < 10; ++i) correctly (the scope
of i is only the scope of the for loop), so you can then reuse i in another for
loop in the same scope. It also correctly scopes declarations in if and while
statements, e.g.

while (const char* p = strchr(str, '/')) str = p + 1;

There is one caveat: if the variable is an object, its constructor is invoked every
time it enters scope and is created, and its destructor is invoked every time it
goes out of scope.

// Inefficient implementation:
for (int i = 0; i < 1000000; ++i) {
 Foo f; // My ctor and dtor get called 1000000 times each.
 f.DoSomething(i);
}

It may be more efficient to declare such a variable used in a loop outside that
loop:

13. 1. 8. Google C++ Style Guide

10/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

Foo f; // My ctor and dtor get called once each.
for (int i = 0; i < 1000000; ++i) {
 f.DoSomething(i);
}

S ta tic and Globa l Va r iables

Static or global variables of class type are forbidden: they cause hard-to-
find bugs due to indeterminate order of construction and destruction.

Objects with static storage duration, including global variables, static variables,
static class member variables, and function static variables, must be Plain Old
Data (POD): only ints, chars, floats, or pointers, or arrays/structs of POD.

The order in which class constructors and initializers for static variables are
called is only partially specified in C++ and can even change from build to build,
which can cause bugs that are difficult to find. Therefore in addition to banning
globals of class type, we do not allow static POD variables to be initialized with
the result of a function, unless that function (such as getenv(), or getpid()) does
not itself depend on any other globals.

Likewise, the order in which destructors are called is defined to be the reverse
of the order in which the constructors were called. Since constructor order is
indeterminate, so is destructor order. For example, at program-end time a
static variable might have been destroyed, but code still running -- perhaps in
another thread -- tries to access it and fails. Or the destructor for a static
'string' variable might be run prior to the destructor for another variable that
contains a reference to that string.

As a result we only allow static variables to contain POD data. This rule
completely disallows vector (use C arrays instead), or string (use const char
[]).

If you need a static or global variable of a class type, consider initializing a
pointer (which will never be freed), from either your main() function or from
pthread_once(). Note that this must be a raw pointer, not a "smart" pointer,
since the smart pointer's destructor will have the order-of-destructor issue that
we are trying to avoid.

Classes

Classes are the fundamental unit of code in C++. Naturally, we use them
extensively. This section lists the main dos and don'ts you should follow when
writing a class.

Doing Work in Cons truc tors

Avoid doing complex initialization in constructors (in particular, initialization
that can fail or that requires virtual method calls).

Definition:

It is possible to perform initialization in the body of the constructor.

Pros :

Convenience in typing. No need to worry about whether the class has been
initialized or not.

Cons :

The problems with doing work in constructors are:

There is no easy way for constructors to signal errors, short of using
exceptions (which are forbidden).
If the work fails, we now have an object whose initialization code failed,

13. 1. 8. Google C++ Style Guide

11/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

so it may be an indeterminate state.
If the work calls virtual functions, these calls will not get dispatched to the
subclass implementations. Future modification to your class can quietly
introduce this problem even if your class is not currently subclassed,
causing much confusion.
If someone creates a global variable of this type (which is against the
rules, but still), the constructor code will be called before main(),
possibly breaking some implicit assumptions in the constructor code.
For instance, gflags will not yet have been initialized.

Decis ion:

Constructors should never call virtual functions or attempt to raise non-fatal
failures. If your object requires non-trivial initialization, consider using a factory
function or Init() method.

Defau lt Cons truc tors

You must define a default constructor if your class defines member
variables and has no other constructors. Otherwise the compiler will do it

for you, badly.

Definition:

The default constructor is called when we new a class object with no
arguments. It is always called when calling new[] (for arrays).

Pros :

Initializing structures by default, to hold "impossible" values, makes debugging
much easier.

Cons :

Extra work for you, the code writer.

Decis ion:

If your class defines member variables and has no other constructors you
must define a default constructor (one that takes no arguments). It should
preferably initialize the object in such a way that its internal state is consistent
and valid.

The reason for this is that if you have no other constructors and do not define a
default constructor, the compiler will generate one for you. This compiler
generated constructor may not initialize your object sensibly.

If your class inherits from an existing class but you add no new member
variables, you are not required to have a default constructor.

Explic it Cons truc tors

Use the C++ keyword explicit for constructors with one argument.

Definition:

Normally, if a constructor takes one argument, it can be used as a conversion.
For instance, if you define Foo::Foo(string name) and then pass a string to a
function that expects a Foo, the constructor will be called to convert the string
into a Foo and will pass the Foo to your function for you. This can be convenient
but is also a source of trouble when things get converted and new objects
created without you meaning them to. Declaring a constructor explicit
prevents it from being invoked implicitly as a conversion.

Pros :

Avoids undesirable conversions.

Cons :

13. 1. 8. Google C++ Style Guide

12/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

None.

Decis ion:

We require all single argument constructors to be explicit. Always put explicit
in front of one-argument constructors in the class definition: explicit
Foo(string name);

The exception is copy constructors, which, in the rare cases when we allow
them, should probably not be explicit. Classes that are intended to be
transparent wrappers around other classes are also exceptions. Such
exceptions should be clearly marked with comments.

Copy Cons truc tors

Provide a copy constructor and assignment operator only when
necessary. Otherwise, disable them with DISALLOW_COPY_AND_ASSIGN.

Definition:

The copy constructor and assignment operator are used to create copies of
objects. The copy constructor is implicitly invoked by the compiler in some
situations, e.g. passing objects by value.

Pros :

Copy constructors make it easy to copy objects. STL containers require that all
contents be copyable and assignable. Copy constructors can be more efficient
than CopyFrom()-style workarounds because they combine construction with
copying, the compiler can elide them in some contexts, and they make it easier
to avoid heap allocation.

Cons :

Implicit copying of objects in C++ is a rich source of bugs and of performance
problems. It also reduces readability, as it becomes hard to track which
objects are being passed around by value as opposed to by reference, and
therefore where changes to an object are reflected.

Decis ion:

Few classes need to be copyable. Most should have neither a copy
constructor nor an assignment operator. In many situations, a pointer or
reference will work just as well as a copied value, with better performance. For
example, you can pass function parameters by reference or pointer instead of
by value, and you can store pointers rather than objects in an STL container.

If your class needs to be copyable, prefer providing a copy method, such as
CopyFrom() or Clone(), rather than a copy constructor, because such methods
cannot be invoked implicitly. If a copy method is insufficient in your situation
(e.g. for performance reasons, or because your class needs to be stored by
value in an STL container), provide both a copy constructor and assignment
operator.

If your class does not need a copy constructor or assignment operator, you
must explicitly disable them. To do so, add dummy declarations for the copy
constructor and assignment operator in the private: section of your class, but
do not provide any corresponding definition (so that any attempt to use them
results in a link error).

For convenience, a DISALLOW_COPY_AND_ASSIGN macro can be used:

// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
 TypeName(const TypeName&); \
 void operator=(const TypeName&)

Then, in class Foo:

13. 1. 8. Google C++ Style Guide

13/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

class Foo {
 public:
 Foo(int f);
 ~Foo();

 private:
 DISALLOW_COPY_AND_ASSIGN(Foo);
};

S truc ts vs . Clas s es

Use a struct only for passive objects that carry data; everything else is a
class.

The struct and class keywords behave almost identically in C++. We add our
own semantic meanings to each keyword, so you should use the appropriate
keyword for the data-type you're defining.

structs should be used for passive objects that carry data, and may have
associated constants, but lack any functionality other than access/setting the
data members. The accessing/setting of fields is done by directly accessing
the fields rather than through method invocations. Methods should not provide
behavior but should only be used to set up the data members, e.g.,
constructor, destructor, Initialize(), Reset(), Validate().

If more functionality is required, a class is more appropriate. If in doubt, make it
a class.

For consistency with STL, you can use struct instead of class for functors and
traits.

Note that member variables in structs and classes have different naming rules.

Inhe r itance

Composition is often more appropriate than inheritance. When using
inheritance, make it public.

Definition:

When a sub-class inherits from a base class, it includes the definitions of all
the data and operations that the parent base class defines. In practice,
inheritance is used in two major ways in C++: implementation inheritance, in
which actual code is inherited by the child, and interface inheritance, in which
only method names are inherited.

Pros :

Implementation inheritance reduces code size by re-using the base class
code as it specializes an existing type. Because inheritance is a compile-time
declaration, you and the compiler can understand the operation and detect
errors. Interface inheritance can be used to programmatically enforce that a
class expose a particular API. Again, the compiler can detect errors, in this
case, when a class does not define a necessary method of the API.

Cons :

For implementation inheritance, because the code implementing a sub-class is
spread between the base and the sub-class, it can be more difficult to
understand an implementation. The sub-class cannot override functions that
are not virtual, so the sub-class cannot change implementation. The base
class may also define some data members, so that specifies physical layout of
the base class.

Decis ion:

All inheritance should be public. If you want to do private inheritance, you
should be including an instance of the base class as a member instead.

13. 1. 8. Google C++ Style Guide

14/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

Do not overuse implementation inheritance. Composition is often more
appropriate. Try to restrict use of inheritance to the "is-a" case: Bar
subclasses Foo if it can reasonably be said that Bar "is a kind of" Foo.

Make your destructor virtual if necessary. If your class has virtual methods,
its destructor should be virtual.

Limit the use of protected to those member functions that might need to be
accessed from subclasses. Note that data members should be private.

When redefining an inherited virtual function, explicitly declare it virtual in the
declaration of the derived class. Rationale: If virtual is omitted, the reader has
to check all ancestors of the class in question to determine if the function is
virtual or not.

Multiple Inhe r itance

Only very rarely is multiple implementation inheritance actually useful. We
allow multiple inheritance only when at most one of the base classes has

an implementation; all other base classes must be pure interface classes
tagged with the Interface suffix.

Definition:

Multiple inheritance allows a sub-class to have more than one base class. We
distinguish between base classes that are pure interfaces and those that have
an implementation.

Pros :

Multiple implementation inheritance may let you re-use even more code than
single inheritance (see Inheritance).

Cons :

Only very rarely is multiple implementation inheritance actually useful. When
multiple implementation inheritance seems like the solution, you can usually
find a different, more explicit, and cleaner solution.

Decis ion:

Multiple inheritance is allowed only when all superclasses, with the possible
exception of the first one, are pure interfaces. In order to ensure that they
remain pure interfaces, they must end with the Interface suffix.

Note: There is an exception to this rule on Windows.

In te r faces

Classes that satisfy certain conditions are allowed, but not required, to end
with an Interface suffix.

Definition:

A class is a pure interface if it meets the following requirements:

It has only public pure virtual ("= 0") methods and static methods (but
see below for destructor).
It may not have non-static data members.
It need not have any constructors defined. If a constructor is provided, it
must take no arguments and it must be protected.
If it is a subclass, it may only be derived from classes that satisfy these
conditions and are tagged with the Interface suffix.

An interface class can never be directly instantiated because of the pure virtual
method(s) it declares. To make sure all implementations of the interface can be
destroyed correctly, the interface must also declare a virtual destructor (in an
exception to the first rule, this should not be pure). See Stroustrup, The C++
Programming Language, 3rd edition, section 12.4 for details.

13. 1. 8. Google C++ Style Guide

15/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Pros :

Tagging a class with the Interface suffix lets others know that they must not
add implemented methods or non static data members. This is particularly
important in the case of multiple inheritance. Additionally, the interface concept
is already well-understood by Java programmers.

Cons :

The Interface suffix lengthens the class name, which can make it harder to
read and understand. Also, the interface property may be considered an
implementation detail that shouldn't be exposed to clients.

Decis ion:

A class may end with Interface only if it meets the above requirements. We do
not require the converse, however: classes that meet the above requirements
are not required to end with Interface.

Opera tor Ove r loading

Do not overload operators except in rare, special circumstances.

Definition:

A class can define that operators such as + and / operate on the class as if it
were a built-in type.

Pros :

Can make code appear more intuitive because a class will behave in the same
way as built-in types (such as int). Overloaded operators are more playful
names for functions that are less-colorfully named, such as Equals() or Add().
For some template functions to work correctly, you may need to define
operators.

Cons :

While operator overloading can make code more intuitive, it has several
drawbacks:

It can fool our intuition into thinking that expensive operations are cheap,
built-in operations.
It is much harder to find the call sites for overloaded operators.
Searching for Equals() is much easier than searching for relevant
invocations of ==.
Some operators work on pointers too, making it easy to introduce bugs.
Foo + 4 may do one thing, while &Foo + 4 does something totally
different. The compiler does not complain for either of these, making this
very hard to debug.

Overloading also has surprising ramifications. For instance, if a class
overloads unary operator&, it cannot safely be forward-declared.

Decis ion:

In general, do not overload operators. The assignment operator (operator=), in
particular, is insidious and should be avoided. You can define functions like
Equals() and CopyFrom() if you need them. Likewise, avoid the dangerous
unary operator& at all costs, if there's any possibility the class might be
forward-declared.

However, there may be rare cases where you need to overload an operator to
interoperate with templates or "standard" C++ classes (such as
operator<<(ostream&, const T&) for logging). These are acceptable if fully
justified, but you should try to avoid these whenever possible. In particular, do
not overload operator== or operator< just so that your class can be used as a
key in an STL container; instead, you should create equality and comparison
functor types when declaring the container.

13. 1. 8. Google C++ Style Guide

16/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

Some of the STL algorithms do require you to overload operator==, and you
may do so in these cases, provided you document why.

See also Copy Constructors and Function Overloading.

Acces s Control

Make data members private, and provide access to them through
accessor functions as needed (for technical reasons, we allow data

members of a test fixture class to be protected when using Google Test).
Typically a variable would be called foo_ and the accessor function foo(). You
may also want a mutator function set_foo(). Exception: static const data
members (typically called kFoo) need not be private.

The definitions of accessors are usually inlined in the header file.

See also Inheritance and Function Names.

Dec la ra tion Orde r

Use the specified order of declarations within a class: public: before
private:, methods before data members (variables), etc.

Your class definition should start with its public: section, followed by its
protected: section and then its private: section. If any of these sections are
empty, omit them.

Within each section, the declarations generally should be in the following
order:

Typedefs and Enums
Constants (static const data members)
Constructors
Destructor
Methods, including static methods
Data Members (except static const data members)

Friend declarations should always be in the private section, and the
DISALLOW_COPY_AND_ASSIGN macro invocation should be at the end of the
private: section. It should be the last thing in the class. See Copy
Constructors.

Method definitions in the corresponding .cc file should be the same as the
declaration order, as much as possible.

Do not put large method definitions inline in the class definition. Usually, only
trivial or performance-critical, and very short, methods may be defined inline.
See Inline Functions for more details.

Wr ite Shor t Func tions

Prefer small and focused functions.

We recognize that long functions are sometimes appropriate, so no hard limit is
placed on functions length. If a function exceeds about 40 lines, think about
whether it can be broken up without harming the structure of the program.

Even if your long function works perfectly now, someone modifying it in a few
months may add new behavior. This could result in bugs that are hard to find.
Keeping your functions short and simple makes it easier for other people to
read and modify your code.

You could find long and complicated functions when working with some code.
Do not be intimidated by modifying existing code: if working with such a function
proves to be difficult, you find that errors are hard to debug, or you want to use
a piece of it in several different contexts, consider breaking up the function into
smaller and more manageable pieces.

13. 1. 8. Google C++ Style Guide

17/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

Google-Specific Magic

There are various tricks and utilities that we use to make C++ code more robust,
and various ways we use C++ that may differ from what you see elsewhere.

Smar t Poin te rs

If you actually need pointer semantics, scoped_ptr is great. You should
only use std::tr1::shared_ptr with a non-const referent when it is truly

necessary to share ownership of an object (e.g. inside an STL container). You
should never use auto_ptr.

Definition:

"Smart" pointers are objects that act like pointers, but automate management of
the underlying memory.

Pros :

Smart pointers are extremely useful for preventing memory leaks, and are
essential for writing exception-safe code. They also formalize and document
the ownership of dynamically allocated memory.

Cons :

We prefer designs in which objects have single, fixed owners. Smart pointers
which enable sharing or transfer of ownership can act as a tempting alternative
to a careful design of ownership semantics, leading to confusing code and
even bugs in which memory is never deleted. The semantics of smart pointers
(especially auto_ptr) can be nonobvious and confusing. The exception-safety
benefits of smart pointers are not decisive, since we do not allow exceptions.

Decis ion:

scoped_ptr
Straightforward and risk-free. Use wherever appropriate.

auto_ptr
Confusing and bug-prone ownership-transfer semantics. Do not use.

shared_ptr
Safe with const referents (i.e. shared_ptr<const T>). Reference-counted
pointers with non-const referents can occasionally be the best design,
but try to rewrite with single owners where possible.

cpplin t

Use cpplint.py to detect style errors.

cpplint.py is a tool that reads a source file and identifies many style errors. It
is not perfect, and has both false positives and false negatives, but it is still a
valuable tool. False positives can be ignored by putting // NOLINT at the end of
the line.

Some projects have instructions on how to run cpplint.py from their project
tools. If the project you are contributing to does not, you can download
cpplint.py separately.

Other C++ Features

Refe rence Arguments

All parameters passed by reference must be labeled const.

Definition:

In C, if a function needs to modify a variable, the parameter must use a pointer,
eg int foo(int *pval). In C++, the function can alternatively declare a

13. 1. 8. Google C++ Style Guide

18/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

reference parameter: int foo(int &val).

Pros :

Defining a parameter as reference avoids ugly code like (*pval)++. Necessary
for some applications like copy constructors. Makes it clear, unlike with
pointers, that a null pointer is not a possible value.

Cons :

References can be confusing, as they have value syntax but pointer
semantics.

Decis ion:

Within function parameter lists all references must be const:

void Foo(const string &in, string *out);

In fact it is a very strong convention in Google code that input arguments are
values or const references while output arguments are pointers. Input
parameters may be const pointers, but we never allow non-const reference
parameters.

However, there are some instances where using const T* is preferable to
const T& for input parameters. For example:

You want to pass in a null pointer.
The function saves a pointer or reference to the input.

Remember that most of the time input parameters are going to be specified as
const T&. Using const T* instead communicates to the reader that the input is
somehow treated differently. So if you choose const T* rather than const T&,
do so for a concrete reason; otherwise it will likely confuse readers by making
them look for an explanation that doesn't exist.

Function Ove r loading

Use overloaded functions (including constructors) only if a reader looking
at a call site can get a good idea of what is happening without having to first

figure out exactly which overload is being called.

Definition:

You may write a function that takes a const string& and overload it with another
that takes const char*.

class MyClass {
 public:
 void Analyze(const string &text);
 void Analyze(const char *text, size_t textlen);
};

Pros :

Overloading can make code more intuitive by allowing an identically-named
function to take different arguments. It may be necessary for templatized code,
and it can be convenient for Visitors.

Cons :

If a function is overloaded by the argument types alone, a reader may have to
understand C++'s complex matching rules in order to tell what's going on. Also
many people are confused by the semantics of inheritance if a derived class
overrides only some of the variants of a function.

Decis ion:

If you want to overload a function, consider qualifying the name with some

13. 1. 8. Google C++ Style Guide

19/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

information about the arguments, e.g., AppendString(), AppendInt() rather than
just Append().

Defau lt Arguments

We do not allow default function parameters, except in limited situations as
explained below. Simulate them with function overloading instead, if

appropriate.

Pros :

Often you have a function that uses default values, but occasionally you want to
override the defaults. Default parameters allow an easy way to do this without
having to define many functions for the rare exceptions. Compared to
overloading the function, default arguments have a cleaner syntax, with less
boilerplate and a clearer distinction between 'required' and 'optional'
arguments.

Cons :

Function pointers are confusing in the presence of default arguments, since
the function signature often doesn't match the call signature. Adding a default
argument to an existing function changes its type, which can cause problems
with code taking its address. Adding function overloads avoids these problems.
In addition, default parameters may result in bulkier code since they are
replicated at every call-site -- as opposed to overloaded functions, where "the
default" appears only in the function definition.

Decis ion:

While the cons above are not that onerous, they still outweigh the (small)
benefits of default arguments over function overloading. So except as
described below, we require all arguments to be explicitly specified.

One specific exception is when the function is a static function (or in an
unnamed namespace) in a .cc file. In this case, the cons don't apply since the
function's use is so localized.

Another specific exception is when default arguments are used to simulate
variable-length argument lists.

// Support up to 4 params by using a default empty AlphaNum.
string StrCat(const AlphaNum &a,
 const AlphaNum &b = gEmptyAlphaNum,
 const AlphaNum &c = gEmptyAlphaNum,
 const AlphaNum &d = gEmptyAlphaNum);

Va r iable-Length Ar rays and a lloca ()

We do not allow variable-length arrays or alloca().

Pros :

Variable-length arrays have natural-looking syntax. Both variable-length arrays
and alloca() are very efficient.

Cons :

Variable-length arrays and alloca are not part of Standard C++. More
importantly, they allocate a data-dependent amount of stack space that can
trigger difficult-to-find memory overwriting bugs: "It ran fine on my machine, but
dies mysteriously in production".

Decis ion:

Use a safe allocator instead, such as scoped_ptr/scoped_array.

13. 1. 8. Google C++ Style Guide

20/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

Fr iends

We allow use of friend classes and functions, within reason.

Friends should usually be defined in the same file so that the reader does not
have to look in another file to find uses of the private members of a class. A
common use of friend is to have a FooBuilder class be a friend of Foo so that
it can construct the inner state of Foo correctly, without exposing this state to
the world. In some cases it may be useful to make a unittest class a friend of
the class it tests.

Friends extend, but do not break, the encapsulation boundary of a class. In
some cases this is better than making a member public when you want to give
only one other class access to it. However, most classes should interact with
other classes solely through their public members.

Exceptions

We do not use C++ exceptions.

Pros :

Exceptions allow higher levels of an application to decide how to handle
"can't happen" failures in deeply nested functions, without the obscuring
and error-prone bookkeeping of error codes.
Exceptions are used by most other modern languages. Using them in
C++ would make it more consistent with Python, Java, and the C++ that
others are familiar with.
Some third-party C++ libraries use exceptions, and turning them off
internally makes it harder to integrate with those libraries.
Exceptions are the only way for a constructor to fail. We can simulate this
with a factory function or an Init() method, but these require heap
allocation or a new "invalid" state, respectively.
Exceptions are really handy in testing frameworks.

Cons :

When you add a throw statement to an existing function, you must
examine all of its transitive callers. Either they must make at least the
basic exception safety guarantee, or they must never catch the
exception and be happy with the program terminating as a result. For
instance, if f() calls g() calls h(), and h throws an exception that f
catches, g has to be careful or it may not clean up properly.
More generally, exceptions make the control flow of programs difficult to
evaluate by looking at code: functions may return in places you don't
expect. This causes maintainability and debugging difficulties. You can
minimize this cost via some rules on how and where exceptions can be
used, but at the cost of more that a developer needs to know and
understand.
Exception safety requires both RAII and different coding practices. Lots of
supporting machinery is needed to make writing correct exception-safe
code easy. Further, to avoid requiring readers to understand the entire
call graph, exception-safe code must isolate logic that writes to
persistent state into a "commit" phase. This will have both benefits and
costs (perhaps where you're forced to obfuscate code to isolate the
commit). Allowing exceptions would force us to always pay those costs
even when they're not worth it.
Turning on exceptions adds data to each binary produced, increasing
compile time (probably slightly) and possibly increasing address space
pressure.
The availability of exceptions may encourage developers to throw them
when they are not appropriate or recover from them when it's not safe to
do so. For example, invalid user input should not cause exceptions to be
thrown. We would need to make the style guide even longer to document
these restrictions!

Decis ion:

13. 1. 8. Google C++ Style Guide

21/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

On their face, the benefits of using exceptions outweigh the costs, especially in
new projects. However, for existing code, the introduction of exceptions has
implications on all dependent code. If exceptions can be propagated beyond a
new project, it also becomes problematic to integrate the new project into
existing exception-free code. Because most existing C++ code at Google is not
prepared to deal with exceptions, it is comparatively difficult to adopt new code
that generates exceptions.

Given that Google's existing code is not exception-tolerant, the costs of using
exceptions are somewhat greater than the costs in a new project. The
conversion process would be slow and error-prone. We don't believe that the
available alternatives to exceptions, such as error codes and assertions,
introduce a significant burden.

Our advice against using exceptions is not predicated on philosophical or
moral grounds, but practical ones. Because we'd like to use our open-source
projects at Google and it's difficult to do so if those projects use exceptions, we
need to advise against exceptions in Google open-source projects as well.
Things would probably be different if we had to do it all over again from scratch.

There is an exception to this rule (no pun intended) for Windows code.

Run-Time Type In forma tion (RTTI)

Avoid using Run Time Type Information (RTTI).

Definition:

RTTI allows a programmer to query the C++ class of an object at run time. This
is done by use of typeid or dynamic_cast.

Cons :

Querying the type of an object at run-time frequently means a design problem.
Needing to know the type of an object at runtime is often an indication that the
design of your class hierarchy is flawed.

Undisciplined use of RTTI makes code hard to maintain. It can lead to type-
based decision trees or switch statements scattered throughout the code, all of
which must be examined when making further changes.

Pros :

The standard alternatives to RTTI (described below) require modification or
redesign of the class hierarchy in question. Sometimes such modifications are
infeasible or undesirable, particularly in widely-used or mature code.

RTTI can be useful in some unit tests. For example, it is useful in tests of factory
classes where the test has to verify that a newly created object has the
expected dynamic type. It is also useful in managing the relationship between
objects and their mocks.

RTTI is useful when considering multiple abstract objects. Consider

bool Base::Equal(Base* other) = 0;
bool Derived::Equal(Base* other) {
 Derived* that = dynamic_cast<Derived*>(other);
 if (that == NULL)
 return false;
 ...
}

Decis ion:

RTTI has legitimate uses but is prone to abuse, so you must be careful when
using it. You may use it freely in unittests, but avoid it when possible in other
code. In particular, think twice before using RTTI in new code. If you find
yourself needing to write code that behaves differently based on the class of an

13. 1. 8. Google C++ Style Guide

22/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

object, consider one of the following alternatives to querying the type:

Virtual methods are the preferred way of executing different code paths
depending on a specific subclass type. This puts the work within the
object itself.
If the work belongs outside the object and instead in some processing
code, consider a double-dispatch solution, such as the Visitor design
pattern. This allows a facility outside the object itself to determine the type
of class using the built-in type system.

When the logic of a program guarantees that a given instance of a base class
is in fact an instance of a particular derived class, then a dynamic_cast may be
used freely on the object. Usually one can use a static_cast as an alternative
in such situations.

Decision trees based on type are a strong indication that your code is on the
wrong track.

if (typeid(*data) == typeid(D1)) {
 ...
} else if (typeid(*data) == typeid(D2)) {
 ...
} else if (typeid(*data) == typeid(D3)) {
...

Code such as this usually breaks when additional subclasses are added to
the class hierarchy. Moreover, when properties of a subclass change, it is
difficult to find and modify all the affected code segments.

Do not hand-implement an RTTI-like workaround. The arguments against RTTI
apply just as much to workarounds like class hierarchies with type tags.
Moreover, workarounds disguise your true intent.

Cas ting

Use C++ casts like static_cast<>(). Do not use other cast formats like int
y = (int)x; or int y = int(x);.

Definition:

C++ introduced a different cast system from C that distinguishes the types of
cast operations.

Pros :

The problem with C casts is the ambiguity of the operation; sometimes you are
doing a conversion (e.g., (int)3.5) and sometimes you are doing a cast (e.g.,
(int)"hello"); C++ casts avoid this. Additionally C++ casts are more visible
when searching for them.

Cons :

The syntax is nasty.

Decis ion:

Do not use C-style casts. Instead, use these C++-style casts.

Use static_cast as the equivalent of a C-style cast that does value
conversion, or when you need to explicitly up-cast a pointer from a
class to its superclass.
Use const_cast to remove the const qualifier (see const).
Use reinterpret_cast to do unsafe conversions of pointer types to and
from integer and other pointer types. Use this only if you know what you
are doing and you understand the aliasing issues.

See the RTTI section for guidance on the use of dynamic_cast.

13. 1. 8. Google C++ Style Guide

23/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

S treams

Use streams only for logging.

Definition:

Streams are a replacement for printf() and scanf().

Pros :

With streams, you do not need to know the type of the object you are printing.
You do not have problems with format strings not matching the argument list.
(Though with gcc, you do not have that problem with printf either.) Streams
have automatic constructors and destructors that open and close the relevant
files.

Cons :

Streams make it difficult to do functionality like pread(). Some formatting
(particularly the common format string idiom %.*s) is difficult if not impossible to
do efficiently using streams without using printf-like hacks. Streams do not
support operator reordering (the %1s directive), which is helpful for
internationalization.

Decis ion:

Do not use streams, except where required by a logging interface. Use printf-
like routines instead.

There are various pros and cons to using streams, but in this case, as in
many other cases, consistency trumps the debate. Do not use streams in your
code.

Ex tended Discuss ion

There has been debate on this issue, so this explains the reasoning in greater
depth. Recall the Only One Way guiding principle: we want to make sure that
whenever we do a certain type of I/O, the code looks the same in all those
places. Because of this, we do not want to allow users to decide between
using streams or using printf plus Read/Write/etc. Instead, we should settle
on one or the other. We made an exception for logging because it is a pretty
specialized application, and for historical reasons.

Proponents of streams have argued that streams are the obvious choice of the
two, but the issue is not actually so clear. For every advantage of streams they
point out, there is an equivalent disadvantage. The biggest advantage is that
you do not need to know the type of the object to be printing. This is a fair point.
But, there is a downside: you can easily use the wrong type, and the compiler
will not warn you. It is easy to make this kind of mistake without knowing when
using streams.

cout << this; // Prints the address
cout << *this; // Prints the contents

The compiler does not generate an error because << has been overloaded.
We discourage overloading for just this reason.

Some say printf formatting is ugly and hard to read, but streams are often no
better. Consider the following two fragments, both with the same typo. Which is
easier to discover?

cerr << "Error connecting to '" << foo->bar()->hostname.first
 << ":" << foo->bar()->hostname.second << ": " << strerror(errno);

fprintf(stderr, "Error connecting to '%s:%u: %s",
 foo->bar()->hostname.first, foo->bar()->hostname.second,
 strerror(errno));

And so on and so forth for any issue you might bring up. (You could argue,

13. 1. 8. Google C++ Style Guide

24/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

"Things would be better with the right wrappers," but if it is true for one scheme,
is it not also true for the other? Also, remember the goal is to make the
language smaller, not add yet more machinery that someone has to learn.)

Either path would yield different advantages and disadvantages, and there is
not a clearly superior solution. The simplicity doctrine mandates we settle on
one of them though, and the majority decision was on printf + read/write.

P re inc rement and P redecrement

Use prefix form (++i) of the increment and decrement operators with
iterators and other template objects.

Definition:

When a variable is incremented (++i or i++) or decremented (--i or i--) and
the value of the expression is not used, one must decide whether to
preincrement (decrement) or postincrement (decrement).

Pros :

When the return value is ignored, the "pre" form (++i) is never less efficient than
the "post" form (i++), and is often more efficient. This is because post-
increment (or decrement) requires a copy of i to be made, which is the value
of the expression. If i is an iterator or other non-scalar type, copying i could
be expensive. Since the two types of increment behave the same when the
value is ignored, why not just always pre-increment?

Cons :

The tradition developed, in C, of using post-increment when the expression
value is not used, especially in for loops. Some find post-increment easier to
read, since the "subject" (i) precedes the "verb" (++), just like in English.

Decis ion:

For simple scalar (non-object) values there is no reason to prefer one form
and we allow either. For iterators and other template types, use pre-increment.

Us e of cons t

Use const whenever it makes sense.

Definition:

Declared variables and parameters can be preceded by the keyword const to
indicate the variables are not changed (e.g., const int foo). Class functions
can have the const qualifier to indicate the function does not change the state
of the class member variables (e.g., class Foo { int Bar(char c) const; };).

Pros :

Easier for people to understand how variables are being used. Allows the
compiler to do better type checking, and, conceivably, generate better code.
Helps people convince themselves of program correctness because they know
the functions they call are limited in how they can modify your variables. Helps
people know what functions are safe to use without locks in multi-threaded
programs.

Cons :

const is viral: if you pass a const variable to a function, that function must have
const in its prototype (or the variable will need a const_cast). This can be a
particular problem when calling library functions.

Decis ion:

const variables, data members, methods and arguments add a level of
compile-time type checking; it is better to detect errors as soon as possible.

13. 1. 8. Google C++ Style Guide

25/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Therefore we strongly recommend that you use const whenever it makes
sense to do so:

If a function does not modify an argument passed by reference or by
pointer, that argument should be const.
Declare methods to be const whenever possible. Accessors should
almost always be const. Other methods should be const if they do not
modify any data members, do not call any non-const methods, and do
not return a non-const pointer or non-const reference to a data member.
Consider making data members const whenever they do not need to be
modified after construction.

The mutable keyword is allowed but is unsafe when used with threads, so
thread safety should be carefully considered first.

Where to put the cons t

Some people favor the form int const *foo to const int* foo. They argue that
this is more readable because it's more consistent: it keeps the rule that const
always follows the object it's describing. However, this consistency argument
doesn't apply in codebases with few deeply-nested pointer expressions since
most const expressions have only one const, and it applies to the underlying
value. In such cases, there's no consistency to maintain. Putting the const first
is arguably more readable, since it follows English in putting the "adjective"
(const) before the "noun" (int).

That said, while we encourage putting const first, we do not require it. But be
consistent with the code around you!

In tege r Types

Of the built-in C++ integer types, the only one used is int. If a program
needs a variable of a different size, use a precise-width integer type from

<stdint.h>, such as int16_t.

Definition:

C++ does not specify the sizes of its integer types. Typically people assume
that short is 16 bits, int is 32 bits, long is 32 bits and long long is 64 bits.

Pros :

Uniformity of declaration.

Cons :

The sizes of integral types in C++ can vary based on compiler and architecture.

Decis ion:

<stdint.h> defines types like int16_t, uint32_t, int64_t, etc. You should
always use those in preference to short, unsigned long long and the like,
when you need a guarantee on the size of an integer. Of the C integer types,
only int should be used. When appropriate, you are welcome to use standard
types like size_t and ptrdiff_t.

We use int very often, for integers we know are not going to be too big, e.g.,
loop counters. Use plain old int for such things. You should assume that an
int is at least 32 bits, but don't assume that it has more than 32 bits. If you need
a 64-bit integer type, use int64_t or uint64_t.

For integers we know can be "big", use int64_t.

You should not use the unsigned integer types such as uint32_t, unless the
quantity you are representing is really a bit pattern rather than a number, or
unless you need defined twos-complement overflow. In particular, do not use
unsigned types to say a number will never be negative. Instead, use assertions
for this.

On Uns igned Integers

13. 1. 8. Google C++ Style Guide

26/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Some people, including some textbook authors, recommend using unsigned
types to represent numbers that are never negative. This is intended as a form
of self-documentation. However, in C, the advantages of such documentation
are outweighed by the real bugs it can introduce. Consider:

for (unsigned int i = foo.Length()-1; i >= 0; --i) ...

This code will never terminate! Sometimes gcc will notice this bug and warn
you, but often it will not. Equally bad bugs can occur when comparing signed
and unsigned variables. Basically, C's type-promotion scheme causes
unsigned types to behave differently than one might expect.

So, document that a variable is non-negative using assertions. Don't use an
unsigned type.

64-bit Por tability

Code should be 64-bit and 32-bit friendly. Bear in mind problems of printing,
comparisons, and structure alignment.

printf() specifiers for some types are not cleanly portable between 32-
bit and 64-bit systems. C99 defines some portable format specifiers.
Unfortunately, MSVC 7.1 does not understand some of these specifiers
and the standard is missing a few, so we have to define our own ugly
versions in some cases (in the style of the standard include file
inttypes.h):

// printf macros for size_t, in the style of inttypes.h
#ifdef _LP64
#define __PRIS_PREFIX "z"
#else
#define __PRIS_PREFIX
#endif

// Use these macros after a % in a printf format string
// to get correct 32/64 bit behavior, like this:
// size_t size = records.size();
// printf("%"PRIuS"\n", size);

#define PRIdS __PRIS_PREFIX "d"
#define PRIxS __PRIS_PREFIX "x"
#define PRIuS __PRIS_PREFIX "u"
#define PRIXS __PRIS_PREFIX "X"
#define PRIoS __PRIS_PREFIX "o"

Type
DO NOT

us e
DO us e Notes

void * (or any
pointer)

%lx %p

int64_t %qd, %lld %"PRId64"

uint64_t
%qu, %llu,
%llx

%"PRIu64",
%"PRIx64"

size_t %u
%"PRIuS",
%"PRIxS"

C99
specifies %zu

ptrdiff_t %d %"PRIdS"
C99

specifies %zd

Note that the PRI* macros expand to independent strings which are
concatenated by the compiler. Hence if you are using a non-constant
format string, you need to insert the value of the macro into the format,
rather than the name. It is still possible, as usual, to include length
specifiers, etc., after the % when using the PRI* macros. So, e.g.
printf("x = %30"PRIuS"\n", x) would expand on 32-bit Linux to

13. 1. 8. Google C++ Style Guide

27/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

printf("x = %30" "u" "\n", x), which the compiler will treat as
printf("x = %30u\n", x).

Remember that sizeof(void *) != sizeof(int). Use intptr_t if you want
a pointer-sized integer.
You may need to be careful with structure alignments, particularly for
structures being stored on disk. Any class/structure with a
int64_t/uint64_t member will by default end up being 8-byte aligned on
a 64-bit system. If you have such structures being shared on disk
between 32-bit and 64-bit code, you will need to ensure that they are
packed the same on both architectures. Most compilers offer a way to
alter structure alignment. For gcc, you can use
__attribute__((packed)). MSVC offers #pragma pack() and
__declspec(align()).
Use the LL or ULL suffixes as needed to create 64-bit constants. For
example:

int64_t my_value = 0x123456789LL;
uint64_t my_mask = 3ULL << 48;

If you really need different code on 32-bit and 64-bit systems, use #ifdef
_LP64 to choose between the code variants. (But please avoid this if
possible, and keep any such changes localized.)

P reproces s or Macros

Be very cautious with macros. Prefer inline functions, enums, and const
variables to macros.

Macros mean that the code you see is not the same as the code the compiler
sees. This can introduce unexpected behavior, especially since macros have
global scope.

Luckily, macros are not nearly as necessary in C++ as they are in C. Instead of
using a macro to inline performance-critical code, use an inline function.
Instead of using a macro to store a constant, use a const variable. Instead of
using a macro to "abbreviate" a long variable name, use a reference. Instead of
using a macro to conditionally compile code ... well, don't do that at all (except,
of course, for the #define guards to prevent double inclusion of header files). It
makes testing much more difficult.

Macros can do things these other techniques cannot, and you do see them in
the codebase, especially in the lower-level libraries. And some of their special
features (like stringifying, concatenation, and so forth) are not available through
the language proper. But before using a macro, consider carefully whether
there's a non-macro way to achieve the same result.

The following usage pattern will avoid many problems with macros; if you use
macros, follow it whenever possible:

Don't define macros in a .h file.
#define macros right before you use them, and #undef them right after.
Do not just #undef an existing macro before replacing it with your own;
instead, pick a name that's likely to be unique.
Try not to use macros that expand to unbalanced C++ constructs, or at
least document that behavior well.
Prefer not using ## to generate function/class/variable names.

0 and nu llptr /NULL

Use 0 for integers, 0.0 for reals, nullptr (or NULL) for pointers, and '\0' for
chars.

Use 0 for integers and 0.0 for reals. This is not controversial.

For pointers (address values), there is a choice between 0 and NULL (and, for
C++11, nullptr). For projects that allow C++11 features, use nullptr. For C++03

13. 1. 8. Google C++ Style Guide

28/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

projects, we prefer NULL because it looks like a pointer. In fact, some C++
compilers provide special definitions of NULL which enable them to give useful
warnings, particularly in situations where sizeof(NULL) is not equal to
sizeof(0).

Use '\0' for chars. This is the correct type and also makes code more
readable.

s izeof

Use sizeof(varname) instead of sizeof(type) whenever possible.

Use sizeof(varname) because it will update appropriately if the type of the
variable changes. sizeof(type) may make sense in some cases, but should
generally be avoided because it can fall out of sync if the variable's type
changes.

Struct data;
memset(&data, 0, sizeof(data));

memset(&data, 0, sizeof(Struct));

au to

Use auto to avoid type names that are just clutter. Continue to use manifest
type declarations when it helps readability, and never use auto for anything

but local variables.

Definition:

In C++11, a variable whose type is given as auto will be given a type that
matches that of the expression used to initialize it. You can use auto either to
initialize a variable by copying, or to bind a reference.

vector<string> v;
...
auto s1 = v[0]; // Makes a copy of v[0].
const auto& s2 = v[0]; // s2 is a reference to v[0].

Pros :

C++ type names can sometimes be long and cumbersome, especially when
they involve templates or namespaces. In a statement like

sparse_hash_map<string, int>::iterator iter = m.find(val);

the return type is hard to read, and obscures the primary purpose of the
statement. Changing it to

auto iter = m.find(val);

makes it more readable.

Without auto we are sometimes forced to write a type name twice in the same
expression, adding no value for the reader, as in

diagnostics::ErrorStatus* status = new diagnostics::ErrorStatus("xyz");

Using auto makes it easier to use intermediate variables when appropriate, by
reducing the burden of writing their types explicitly.

Cons :

Sometimes code is clearer when types are manifest, especially when a
variable's initialization depends on things that were declared far away. In an

13. 1. 8. Google C++ Style Guide

29/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

expression like

auto i = x.Lookup(key);

it may not be obvious what i's type is, if x was declared hundreds of lines
earlier.

Programmers have to understand the difference between auto and const auto&
or they'll get copies when they didn't mean to.

The interaction between auto and C++11 brace-initialization can be confusing.
(C++11 brace-initialization isn't an approved feature, but this may become
relevant when and if it is permitted.) The declarations

auto x(3); // Note: parentheses.
auto y{3}; // Note: curly braces.

mean different things — x is an int, while y is an initializer_list. The same
applies to other normally-invisible proxy types.

If an auto variable is used as part of an interface, e.g. as a constant in a
header, then a programmer might change its type while only intending to
change its value, leading to a more radical API change than intended.

Decis ion:

auto is permitted, for local variables only. Do not use auto for file-scope or
namespace-scope variables, or for class members.

The auto keyword is also used in an unrelated C++11 feature: it's part of the
syntax for a new kind of function declaration with a trailing return type. Function
declarations with trailing return types are not permitted.

Boos t

Use only approved libraries from the Boost library collection.

Definition:

The Boost library collection is a popular collection of peer-reviewed, free,
open-source C++ libraries.

Pros :

Boost code is generally very high-quality, is widely portable, and fills many
important gaps in the C++ standard library, such as type traits, better binders,
and better smart pointers. It also provides an implementation of the TR1
extension to the standard library.

Cons :

Some Boost libraries encourage coding practices which can hamper
readability, such as metaprogramming and other advanced template
techniques, and an excessively "functional" style of programming.

Decis ion:

In order to maintain a high level of readability for all contributors who might read
and maintain code, we only allow an approved subset of Boost features.
Currently, the following libraries are permitted:

Call Traits from boost/call_traits.hpp
Compressed Pair from boost/compressed_pair.hpp
Pointer Container from boost/ptr_container except serialization and
wrappers for containers not in the C++03 standard
(ptr_circular_buffer.hpp and ptr_unordered*)
Array from boost/array.hpp
The Boost Graph Library (BGL) from boost/graph, except serialization

13. 1. 8. Google C++ Style Guide

30/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

(adj_list_serialize.hpp) and parallel/distributed algorithms and data
structures (boost/graph/parallel/* and boost/graph/distributed/*).
Property Map from boost/property_map, except parallel/distributed
property maps (boost/property_map/parallel/*).
The part of Iterator that deals with defining iterators:
boost/iterator/iterator_adaptor.hpp,
boost/iterator/iterator_facade.hpp, and
boost/function_output_iterator.hpp

We are actively considering adding other Boost features to the list, so this rule
may be relaxed in the future.

C++11

Use only approved libraries and language extensions from C++11 (formerly
known as C++0x). Consider portability to other environments before using

C++11 features in your project.

Definition:

C++11 is the latest ISO C++ standard. It contains significant changes both to the
language and libraries.

Pros :

C++11 has become the official standard, and eventually will be supported by
most C++ compilers. It standardizes some common C++ extensions that we use
already, allows shorthands for some operations, and has some performance
and safety improvements.

Cons :

The C++11 standard is substantially more complex than its predecessor (1,300
pages versus 800 pages), and is unfamiliar to many developers. The long-term
effects of some features on code readability and maintenance are unknown.
We cannot predict when its various features will be implemented uniformly by
tools that may be of interest (gcc, icc, clang, Eclipse, etc.).

As with Boost, some C++11 extensions encourage coding practices that
hamper readability—for example by removing checked redundancy (such as
type names) that may be helpful to readers, or by encouraging template
metaprogramming. Other extensions duplicate functionality available through
existing mechanisms, which may lead to confusion and conversion costs.

Decis ion:

Use only C++11 libraries and language features that have been approved for
use. Currently only the following C++11 features are approved:

auto (for local variables only).
Use of >> with no intervening space to close multiple levels of template
arguments, as in set<list<string>>, where C++03 required a space as
in set<list<string> >.
Range-based for loops.
Use of the LL and ULL suffixes on numeric literals to guarantee that their
type is at least 64 bits wide.
Variadic macros (but note that use of macros is discouraged).
All of the new STL algorithms in the <algorithm> and <numeric> headers,
except for the versions of min, max, and minmax whose signatures contain
initializer lists.
Use of local types as template parameters.
nullptr and nullptr_t.

Other features will be approved individually as appropriate. Avoid writing code
that is incompatible with C++11 (even though it works in C++03).

Naming

13. 1. 8. Google C++ Style Guide

31/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

The most important consistency rules are those that govern naming. The style
of a name immediately informs us what sort of thing the named entity is: a type,
a variable, a function, a constant, a macro, etc., without requiring us to search
for the declaration of that entity. The pattern-matching engine in our brains
relies a great deal on these naming rules.

Naming rules are pretty arbitrary, but we feel that consistency is more important
than individual preferences in this area, so regardless of whether you find them
sensible or not, the rules are the rules.

Genera l Naming Ru les

Function names, variable names, and filenames should be descriptive;
eschew abbreviation. Types and variables should be nouns, while

functions should be "command" verbs.

How to Name

Give as descriptive a name as possible, within reason. Do not worry about
saving horizontal space as it is far more important to make your code
immediately understandable by a new reader. Examples of well-chosen
names:

int num_errors; // Good.
int num_completed_connections; // Good.

Poorly-chosen names use ambiguous abbreviations or arbitrary characters
that do not convey meaning:

int n; // Bad - meaningless.
int nerr; // Bad - ambiguous abbreviation.
int n_comp_conns; // Bad - ambiguous abbreviation.

Type and variable names should typically be nouns: e.g., FileOpener,
num_errors.

Function names should typically be imperative (that is they should be
commands): e.g., OpenFile(), set_num_errors(). There is an exception for
accessors, which, described more completely in Function Names, should be
named the same as the variable they access.

Abbreviations

Do not use abbreviations unless they are extremely well known outside your
project. For example:

// Good
// These show proper names with no abbreviations.
int num_dns_connections; // Most people know what "DNS" stands for.
int price_count_reader; // OK, price count. Makes sense.

// Bad!
// Abbreviations can be confusing or ambiguous outside a small group.
int wgc_connections; // Only your group knows what this stands for.
int pc_reader; // Lots of things can be abbreviated "pc".

Never abbreviate by leaving out letters:

int error_count; // Good.

int error_cnt; // Bad.

File Names

13. 1. 8. Google C++ Style Guide

32/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

Filenames should be all lowercase and can include underscores (_) or
dashes (-). Follow the convention that your project uses. If there is no

consistent local pattern to follow, prefer "_".

Examples of acceptable file names:

my_useful_class.cc
my-useful-class.cc
myusefulclass.cc
myusefulclass_test.cc // _unittest and _regtest are deprecated.

C++ files should end in .cc and header files should end in .h.

Do not use filenames that already exist in /usr/include, such as db.h.

In general, make your filenames very specific. For example, use
http_server_logs.h rather than logs.h. A very common case is to have a pair
of files called, e.g., foo_bar.h and foo_bar.cc, defining a class called FooBar.

Inline functions must be in a .h file. If your inline functions are very short, they
should go directly into your .h file. However, if your inline functions include a lot
of code, they may go into a third file that ends in -inl.h. In a class with a lot of
inline code, your class could have three files:

url_table.h // The class declaration.
url_table.cc // The class definition.
url_table-inl.h // Inline functions that include lots of code.

See also the section -inl.h Files

Type Names

Type names start with a capital letter and have a capital letter for each new
word, with no underscores: MyExcitingClass, MyExcitingEnum.

The names of all types — classes, structs, typedefs, and enums — have the
same naming convention. Type names should start with a capital letter and
have a capital letter for each new word. No underscores. For example:

// classes and structs
class UrlTable { ...
class UrlTableTester { ...
struct UrlTableProperties { ...

// typedefs
typedef hash_map<UrlTableProperties *, string> PropertiesMap;

// enums
enum UrlTableErrors { ...

Va r iable Names

Variable names are all lowercase, with underscores between words. Class
member variables have trailing underscores. For instance:

my_exciting_local_variable, my_exciting_member_variable_.

Common Variable names

For example:

string table_name; // OK - uses underscore.
string tablename; // OK - all lowercase.

string tableName; // Bad - mixed case.

Class Data M embers

13. 1. 8. Google C++ Style Guide

33/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

Data members (also called instance variables or member variables) are
lowercase with optional underscores like regular variable names, but always
end with a trailing underscore.

string table_name_; // OK - underscore at end.
string tablename_; // OK.

Struct V ariables

Data members in structs should be named like regular variables without the
trailing underscores that data members in classes have.

struct UrlTableProperties {
 string name;
 int num_entries;
}

See Structs vs. Classes for a discussion of when to use a struct versus a
class.

Global V ariables

There are no special requirements for global variables, which should be rare
in any case, but if you use one, consider prefixing it with g_ or some other
marker to easily distinguish it from local variables.

Cons tant Names

Use a k followed by mixed case: kDaysInAWeek.

All compile-time constants, whether they are declared locally, globally, or as
part of a class, follow a slightly different naming convention from other
variables. Use a k followed by words with uppercase first letters:

const int kDaysInAWeek = 7;

Function Names

Regular functions have mixed case; accessors and mutators match the
name of the variable: MyExcitingFunction(), MyExcitingMethod(),

my_exciting_member_variable(), set_my_exciting_member_variable().

Regular Functions

Functions should start with a capital letter and have a capital letter for each new
word. No underscores.

If your function crashes upon an error, you should append OrDie to the
function name. This only applies to functions which could be used by
production code and to errors that are reasonably likely to occur during normal
operation.

AddTableEntry()
DeleteUrl()
OpenFileOrDie()

Accessors and M utators

Accessors and mutators (get and set functions) should match the name of the
variable they are getting and setting. This shows an excerpt of a class whose
instance variable is num_entries_.

class MyClass {
 public:
 ...

13. 1. 8. Google C++ Style Guide

34/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

link ▽

 int num_entries() const { return num_entries_; }
 void set_num_entries(int num_entries) { num_entries_ = num_entries; }

 private:
 int num_entries_;
};

You may also use lowercase letters for other very short inlined functions. For
example if a function were so cheap you would not cache the value if you were
calling it in a loop, then lowercase naming would be acceptable.

Names pace Names

Namespace names are all lower-case, and based on project names and
possibly their directory structure: google_awesome_project.

See Namespaces for a discussion of namespaces and how to name them.

Enumera tor Names

Enumerators should be named either like constants or like macros: either
kEnumName or ENUM_NAME.

Preferably, the individual enumerators should be named like constants.
However, it is also acceptable to name them like macros. The enumeration
name, UrlTableErrors (and AlternateUrlTableErrors), is a type, and therefore
mixed case.

enum UrlTableErrors {
 kOK = 0,
 kErrorOutOfMemory,
 kErrorMalformedInput,
};
enum AlternateUrlTableErrors {
 OK = 0,
 OUT_OF_MEMORY = 1,
 MALFORMED_INPUT = 2,
};

Until January 2009, the style was to name enum values like macros. This
caused problems with name collisions between enum values and macros.
Hence, the change to prefer constant-style naming was put in place. New code
should prefer constant-style naming if possible. However, there is no reason to
change old code to use constant-style names, unless the old names are
actually causing a compile-time problem.

Macro Names

You're not really going to define a macro, are you? If you do, they're like
this: MY_MACRO_THAT_SCARES_SMALL_CHILDREN.

Please see the description of macros; in general macros should not be used.
However, if they are absolutely needed, then they should be named with all
capitals and underscores.

#define ROUND(x) ...
#define PI_ROUNDED 3.0

Exceptions to Naming Ru les

If you are naming something that is analogous to an existing C or C++ entity
then you can follow the existing naming convention scheme.

bigopen()

13. 1. 8. Google C++ Style Guide

35/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

function name, follows form of open()
uint

typedef
bigpos

struct or class, follows form of pos
sparse_hash_map

STL-like entity; follows STL naming conventions
LONGLONG_MAX

a constant, as in INT_MAX

Comments

Though a pain to write, comments are absolutely vital to keeping our code
readable. The following rules describe what you should comment and where.
But remember: while comments are very important, the best code is self-
documenting. Giving sensible names to types and variables is much better than
using obscure names that you must then explain through comments.

When writing your comments, write for your audience: the next contributor who
will need to understand your code. Be generous — the next one may be you!

Comment S ty le

Use either the // or /* */ syntax, as long as you are consistent.

You can use either the // or the /* */ syntax; however, // is much more
common. Be consistent with how you comment and what style you use where.

File Comments

Start each file with license boilerplate, followed by a description of its
contents.

Legal Notice and Author L ine

Every file should contain license boilerplate. Choose the appropriate boilerplate
for the license used by the project (for example, Apache 2.0, BSD, LGPL, GPL).

If you make significant changes to a file with an author line, consider deleting
the author line.

Fi le Contents

Every file should have a comment at the top describing its contents.

Generally a .h file will describe the classes that are declared in the file with an
overview of what they are for and how they are used. A .cc file should contain
more information about implementation details or discussions of tricky
algorithms. If you feel the implementation details or a discussion of the
algorithms would be useful for someone reading the .h, feel free to put it there
instead, but mention in the .cc that the documentation is in the .h file.

Do not duplicate comments in both the .h and the .cc. Duplicated comments
diverge.

Clas s Comments

Every class definition should have an accompanying comment that
describes what it is for and how it should be used.

// Iterates over the contents of a GargantuanTable. Sample usage:
// GargantuanTableIterator* iter = table->NewIterator();
// for (iter->Seek("foo"); !iter->done(); iter->Next()) {
// process(iter->key(), iter->value());
// }

13. 1. 8. Google C++ Style Guide

36/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

// delete iter;
class GargantuanTableIterator {
 ...
};

If you have already described a class in detail in the comments at the top of
your file feel free to simply state "See comment at top of file for a complete
description", but be sure to have some sort of comment.

Document the synchronization assumptions the class makes, if any. If an
instance of the class can be accessed by multiple threads, take extra care to
document the rules and invariants surrounding multithreaded use.

Function Comments

Declaration comments describe use of the function; comments at the
definition of a function describe operation.

Function Declarations

Every function declaration should have comments immediately preceding it that
describe what the function does and how to use it. These comments should be
descriptive ("Opens the file") rather than imperative ("Open the file"); the
comment describes the function, it does not tell the function what to do. In
general, these comments do not describe how the function performs its task.
Instead, that should be left to comments in the function definition.

Types of things to mention in comments at the function declaration:

What the inputs and outputs are.
For class member functions: whether the object remembers reference
arguments beyond the duration of the method call, and whether it will free
them or not.
If the function allocates memory that the caller must free.
Whether any of the arguments can be a null pointer.
If there are any performance implications of how a function is used.
If the function is re-entrant. What are its synchronization assumptions?

Here is an example:

// Returns an iterator for this table. It is the client's
// responsibility to delete the iterator when it is done with it,
// and it must not use the iterator once the GargantuanTable object
// on which the iterator was created has been deleted.
//
// The iterator is initially positioned at the beginning of the table.
//
// This method is equivalent to:
// Iterator* iter = table->NewIterator();
// iter->Seek("");
// return iter;
// If you are going to immediately seek to another place in the
// returned iterator, it will be faster to use NewIterator()
// and avoid the extra seek.
Iterator* GetIterator() const;

However, do not be unnecessarily verbose or state the completely obvious.
Notice below that it is not necessary to say "returns false otherwise" because
this is implied.

// Returns true if the table cannot hold any more entries.
bool IsTableFull();

When commenting constructors and destructors, remember that the person
reading your code knows what constructors and destructors are for, so
comments that just say something like "destroys this object" are not useful.
Document what constructors do with their arguments (for example, if they take

13. 1. 8. Google C++ Style Guide

37/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

ownership of pointers), and what cleanup the destructor does. If this is trivial,
just skip the comment. It is quite common for destructors not to have a header
comment.

Function Definitions

Each function definition should have a comment describing what the function
does if there's anything tricky about how it does its job. For example, in the
definition comment you might describe any coding tricks you use, give an
overview of the steps you go through, or explain why you chose to implement
the function in the way you did rather than using a viable alternative. For
instance, you might mention why it must acquire a lock for the first half of the
function but why it is not needed for the second half.

Note you should not just repeat the comments given with the function
declaration, in the .h file or wherever. It's okay to recapitulate briefly what the
function does, but the focus of the comments should be on how it does it.

Va r iable Comments

In general the actual name of the variable should be descriptive enough to
give a good idea of what the variable is used for. In certain cases, more

comments are required.

Class Data M embers

Each class data member (also called an instance variable or member variable)
should have a comment describing what it is used for. If the variable can take
sentinel values with special meanings, such as a null pointer or -1, document
this. For example:

private:
 // Keeps track of the total number of entries in the table.
 // Used to ensure we do not go over the limit. -1 means
 // that we don't yet know how many entries the table has.
 int num_total_entries_;

Global V ariables

As with data members, all global variables should have a comment describing
what they are and what they are used for. For example:

// The total number of tests cases that we run through in this regression test.
const int kNumTestCases = 6;

Implementa tion Comments

In your implementation you should have comments in tricky, non-obvious,
interesting, or important parts of your code.

Class Data M embers

Tricky or complicated code blocks should have comments before them.
Example:

// Divide result by two, taking into account that x
// contains the carry from the add.
for (int i = 0; i < result->size(); i++) {
 x = (x << 8) + (*result)[i];
 (*result)[i] = x >> 1;
 x &= 1;
}

L ine Comments

Also, lines that are non-obvious should get a comment at the end of the line.

13. 1. 8. Google C++ Style Guide

38/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

These end-of-line comments should be separated from the code by 2 spaces.
Example:

// If we have enough memory, mmap the data portion too.
mmap_budget = max<int64>(0, mmap_budget - index_->length());
if (mmap_budget >= data_size_ && !MmapData(mmap_chunk_bytes, mlock))
 return; // Error already logged.

Note that there are both comments that describe what the code is doing, and
comments that mention that an error has already been logged when the
function returns.

If you have several comments on subsequent lines, it can often be more
readable to line them up:

DoSomething(); // Comment here so the comments line up.
DoSomethingElseThatIsLonger(); // Comment here so there are two spaces between
 // the code and the comment.
{ // One space before comment when opening a new scope is allowed,
 // thus the comment lines up with the following comments and code.
 DoSomethingElse(); // Two spaces before line comments normally.
}

nul lptr/ NULL , true/ fa ls e, 1, 2, 3...

When you pass in a null pointer, boolean, or literal integer values to functions,
you should consider adding a comment about what they are, or make your
code self-documenting by using constants. For example, compare:

bool success = CalculateSomething(interesting_value,
 10,
 false,
 NULL); // What are these arguments??

versus:

bool success = CalculateSomething(interesting_value,
 10, // Default base value.
 false, // Not the first time we're calling this.
 NULL); // No callback.

Or alternatively, constants or self-describing variables:

const int kDefaultBaseValue = 10;
const bool kFirstTimeCalling = false;
Callback *null_callback = NULL;
bool success = CalculateSomething(interesting_value,
 kDefaultBaseValue,
 kFirstTimeCalling,
 null_callback);

Don' ts

Note that you should never describe the code itself. Assume that the person
reading the code knows C++ better than you do, even though he or she does
not know what you are trying to do:

// Now go through the b array and make sure that if i occurs,
// the next element is i+1.
... // Geez. What a useless comment.

Punctua tion, Spe lling and Grammar

Pay attention to punctuation, spelling, and grammar; it is easier to read
well-written comments than badly written ones.

13. 1. 8. Google C++ Style Guide

39/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

Comments should be as readable as narrative text, with proper capitalization
and punctuation. In many cases, complete sentences are more readable than
sentence fragments. Shorter comments, such as comments at the end of a line
of code, can sometimes be less formal, but you should be consistent with your
style.

Although it can be frustrating to have a code reviewer point out that you are
using a comma when you should be using a semicolon, it is very important that
source code maintain a high level of clarity and readability. Proper punctuation,
spelling, and grammar help with that goal.

TODO Comments

Use TODO comments for code that is temporary, a short-term solution, or
good-enough but not perfect.

TODOs should include the string TODO in all caps, followed by the name, e-mail
address, or other identifier of the person who can best provide context about
the problem referenced by the TODO. A colon is optional. The main purpose is to
have a consistent TODO format that can be searched to find the person who can
provide more details upon request. A TODO is not a commitment that the person
referenced will fix the problem. Thus when you create a TODO, it is almost
always your name that is given.

// TODO(kl@gmail.com): Use a "*" here for concatenation operator.
// TODO(Zeke) change this to use relations.

If your TODO is of the form "At a future date do something" make sure that you
either include a very specific date ("Fix by November 2005") or a very specific
event ("Remove this code when all clients can handle XML responses.").

Depreca tion Comments

Mark deprecated interface points with DEPRECATED comments.

You can mark an interface as deprecated by writing a comment containing the
word DEPRECATED in all caps. The comment goes either before the declaration of
the interface or on the same line as the declaration.

After the word DEPRECATED, write your name, e-mail address, or other identifier
in parentheses.

A deprecation comment must include simple, clear directions for people to fix
their callsites. In C++, you can implement a deprecated function as an inline
function that calls the new interface point.

Marking an interface point DEPRECATED will not magically cause any callsites to
change. If you want people to actually stop using the deprecated facility, you
will have to fix the callsites yourself or recruit a crew to help you.

New code should not contain calls to deprecated interface points. Use the new
interface point instead. If you cannot understand the directions, find the person
who created the deprecation and ask them for help using the new interface
point.

Formatting

Coding style and formatting are pretty arbitrary, but a project is much easier to
follow if everyone uses the same style. Individuals may not agree with every
aspect of the formatting rules, and some of the rules may take some getting
used to, but it is important that all project contributors follow the style rules so
that they can all read and understand everyone's code easily.

To help you format code correctly, we've created a settings file for emacs.

13. 1. 8. Google C++ Style Guide

40/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

link ▽

Line Length

Each line of text in your code should be at most 80 characters long.

We recognize that this rule is controversial, but so much existing code already
adheres to it, and we feel that consistency is important.

Pros :

Those who favor this rule argue that it is rude to force them to resize their
windows and there is no need for anything longer. Some folks are used to
having several code windows side-by-side, and thus don't have room to widen
their windows in any case. People set up their work environment assuming a
particular maximum window width, and 80 columns has been the traditional
standard. Why change it?

Cons :

Proponents of change argue that a wider line can make code more readable.
The 80-column limit is an hidebound throwback to 1960s mainframes; modern
equipment has wide screens that can easily show longer lines.

Decis ion:

80 characters is the maximum.

Exception: if a comment line contains an example command or a literal URL
longer than 80 characters, that line may be longer than 80 characters for ease
of cut and paste.

Exception: an #include statement with a long path may exceed 80 columns. Try
to avoid situations where this becomes necessary.

Exception: you needn't be concerned about header guards that exceed the
maximum length.

Non-ASCII Cha rac te rs

Non-ASCII characters should be rare, and must use UTF-8 formatting.

You shouldn't hard-code user-facing text in source, even English, so use of
non-ASCII characters should be rare. However, in certain cases it is
appropriate to include such words in your code. For example, if your code
parses data files from foreign sources, it may be appropriate to hard-code the
non-ASCII string(s) used in those data files as delimiters. More commonly,
unittest code (which does not need to be localized) might contain non-ASCII
strings. In such cases, you should use UTF-8, since that is an encoding
understood by most tools able to handle more than just ASCII. Hex encoding is
also OK, and encouraged where it enhances readability — for example,
"\xEF\xBB\xBF" is the Unicode zero-width no-break space character, which
would be invisible if included in the source as straight UTF-8.

Spaces vs . Tabs

Use only spaces, and indent 2 spaces at a time.

We use spaces for indentation. Do not use tabs in your code. You should set
your editor to emit spaces when you hit the tab key.

Function Dec la ra tions and Defin itions

Return type on the same line as function name, parameters on the same
line if they fit.

Functions look like this:

ReturnType ClassName::FunctionName(Type par_name1, Type par_name2) {

13. 1. 8. Google C++ Style Guide

41/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

 DoSomething();
 ...
}

If you have too much text to fit on one line:

ReturnType ClassName::ReallyLongFunctionName(Type par_name1, Type par_name2,
 Type par_name3) {
 DoSomething();
 ...
}

or if you cannot fit even the first parameter:

ReturnType LongClassName::ReallyReallyReallyLongFunctionName(
 Type par_name1, // 4 space indent
 Type par_name2,
 Type par_name3) {
 DoSomething(); // 2 space indent
 ...
}

Some points to note:

The return type is always on the same line as the function name.
The open parenthesis is always on the same line as the function name.
There is never a space between the function name and the open
parenthesis.
There is never a space between the parentheses and the parameters.
The open curly brace is always at the end of the same line as the last
parameter.
The close curly brace is either on the last line by itself or (if other style
rules permit) on the same line as the open curly brace.
There should be a space between the close parenthesis and the open
curly brace.
All parameters should be named, with identical names in the declaration
and implementation.
All parameters should be aligned if possible.
Default indentation is 2 spaces.
Wrapped parameters have a 4 space indent.

If some parameters are unused, comment out the variable name in the function
definition:

// Always have named parameters in interfaces.
class Shape {
 public:
 virtual void Rotate(double radians) = 0;
}

// Always have named parameters in the declaration.
class Circle : public Shape {
 public:
 virtual void Rotate(double radians);
}

// Comment out unused named parameters in definitions.
void Circle::Rotate(double /*radians*/) {}

// Bad - if someone wants to implement later, it's not clear what the
// variable means.
void Circle::Rotate(double) {}

Function Ca lls

13. 1. 8. Google C++ Style Guide

42/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

On one line if it fits; otherwise, wrap arguments at the parenthesis.

Function calls have the following format:

bool retval = DoSomething(argument1, argument2, argument3);

If the arguments do not all fit on one line, they should be broken up onto multiple
lines, with each subsequent line aligned with the first argument. Do not add
spaces after the open paren or before the close paren:

bool retval = DoSomething(averyveryveryverylongargument1,
 argument2, argument3);

If the function has many arguments, consider having one per line if this makes
the code more readable:

bool retval = DoSomething(argument1,
 argument2,
 argument3,
 argument4);

If the function signature is so long that it cannot fit within the maximum line
length, you may place all arguments on subsequent lines:

if (...) {
 ...
 ...
 if (...) {
 DoSomethingThatRequiresALongFunctionName(
 very_long_argument1, // 4 space indent
 argument2,
 argument3,
 argument4);
 }

Conditiona ls

Prefer no spaces inside parentheses. The else keyword belongs on a new
line.

There are two acceptable formats for a basic conditional statement. One
includes spaces between the parentheses and the condition, and one does
not.

The most common form is without spaces. Either is fine, but be consistent. If
you are modifying a file, use the format that is already present. If you are writing
new code, use the format that the other files in that directory or project use. If in
doubt and you have no personal preference, do not add the spaces.

if (condition) { // no spaces inside parentheses
 ... // 2 space indent.
} else if (...) { // The else goes on the same line as the closing brace.
 ...
} else {
 ...
}

If you prefer you may add spaces inside the parentheses:

if (condition) { // spaces inside parentheses - rare
 ... // 2 space indent.
} else { // The else goes on the same line as the closing brace.
 ...
}

13. 1. 8. Google C++ Style Guide

43/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Note that in all cases you must have a space between the if and the open
parenthesis. You must also have a space between the close parenthesis and
the curly brace, if you're using one.

if(condition) // Bad - space missing after IF.
if (condition){ // Bad - space missing before {.
if(condition){ // Doubly bad.

if (condition) { // Good - proper space after IF and before {.

Short conditional statements may be written on one line if this enhances
readability. You may use this only when the line is brief and the statement does
not use the else clause.

if (x == kFoo) return new Foo();
if (x == kBar) return new Bar();

This is not allowed when the if statement has an else:

// Not allowed - IF statement on one line when there is an ELSE clause
if (x) DoThis();
else DoThat();

In general, curly braces are not required for single-line statements, but they
are allowed if you like them; conditional or loop statements with complex
conditions or statements may be more readable with curly braces. Some
projects require that an if must always always have an accompanying brace.

if (condition)
 DoSomething(); // 2 space indent.

if (condition) {
 DoSomething(); // 2 space indent.
}

However, if one part of an if-else statement uses curly braces, the other part
must too:

// Not allowed - curly on IF but not ELSE
if (condition) {
 foo;
} else
 bar;

// Not allowed - curly on ELSE but not IF
if (condition)
 foo;
else {
 bar;
}

// Curly braces around both IF and ELSE required because
// one of the clauses used braces.
if (condition) {
 foo;
} else {
 bar;
}

Loops and Switch S ta tements

Switch statements may use braces for blocks. Empty loop bodies should
use {} or continue.

13. 1. 8. Google C++ Style Guide

44/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

case blocks in switch statements can have curly braces or not, depending on
your preference. If you do include curly braces they should be placed as
shown below.

If not conditional on an enumerated value, switch statements should always
have a default case (in the case of an enumerated value, the compiler will
warn you if any values are not handled). If the default case should never
execute, simply assert:

switch (var) {
 case 0: { // 2 space indent
 ... // 4 space indent
 break;
 }
 case 1: {
 ...
 break;
 }
 default: {
 assert(false);
 }
}

Empty loop bodies should use {} or continue, but not a single semicolon.

while (condition) {
 // Repeat test until it returns false.
}
for (int i = 0; i < kSomeNumber; ++i) {} // Good - empty body.
while (condition) continue; // Good - continue indicates no logic.

while (condition); // Bad - looks like part of do/while loop.

Poin te r and Re fe rence Expres s ions

No spaces around period or arrow. Pointer operators do not have trailing
spaces.

The following are examples of correctly-formatted pointer and reference
expressions:

x = *p;
p = &x;
x = r.y;
x = r->y;

Note that:

There are no spaces around the period or arrow when accessing a
member.
Pointer operators have no space after the * or &.

When declaring a pointer variable or argument, you may place the asterisk
adjacent to either the type or to the variable name:

// These are fine, space preceding.
char *c;
const string &str;

// These are fine, space following.
char* c; // but remember to do "char* c, *d, *e, ...;"!
const string& str;

char * c; // Bad - spaces on both sides of *
const string & str; // Bad - spaces on both sides of &

13. 1. 8. Google C++ Style Guide

45/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

link ▽

link ▽

You should do this consistently within a single file, so, when modifying an
existing file, use the style in that file.

Boolean Expres s ions

When you have a boolean expression that is longer than the standard line
length, be consistent in how you break up the lines.

In this example, the logical AND operator is always at the end of the lines:

if (this_one_thing > this_other_thing &&
 a_third_thing == a_fourth_thing &&
 yet_another && last_one) {
 ...
}

Note that when the code wraps in this example, both of the && logical AND
operators are at the end of the line. This is more common in Google code,
though wrapping all operators at the beginning of the line is also allowed. Feel
free to insert extra parentheses judiciously because they can be very helpful in
increasing readability when used appropriately. Also note that you should
always use the punctuation operators, such as && and ~, rather than the word
operators, such as and and compl.

Retu rn Va lues

Do not needlessly surround the return expression with parentheses.

Use parentheses in return expr; only where you would use them in x =
expr;.

return result; // No parentheses in the simple case.
return (some_long_condition && // Parentheses ok to make a complex
 another_condition); // expression more readable.

return (value); // You wouldn't write var = (value);
return(result); // return is not a function!

Va r iable and Ar ray In itia liza tion

Your choice of = or ().

You may choose between = and (); the following are all correct:

int x = 3;
int x(3);
string name("Some Name");
string name = "Some Name";

P reproces s or Direc tives

The hash mark that starts a preprocessor directive should always be at the
beginning of the line.

Even when preprocessor directives are within the body of indented code, the
directives should start at the beginning of the line.

// Good - directives at beginning of line
 if (lopsided_score) {
#if DISASTER_PENDING // Correct -- Starts at beginning of line
 DropEverything();
if NOTIFY // OK but not required -- Spaces after

13. 1. 8. Google C++ Style Guide

46/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

 NotifyClient();
endif
#endif
 BackToNormal();
 }

// Bad - indented directives
 if (lopsided_score) {
 #if DISASTER_PENDING // Wrong! The "#if" should be at beginning of line
 DropEverything();
 #endif // Wrong! Do not indent "#endif"
 BackToNormal();
 }

Clas s Forma t

Sections in public, protected and private order, each indented one
space.

The basic format for a class declaration (lacking the comments, see Class
Comments for a discussion of what comments are needed) is:

class MyClass : public OtherClass {
 public: // Note the 1 space indent!
 MyClass(); // Regular 2 space indent.
 explicit MyClass(int var);
 ~MyClass() {}

 void SomeFunction();
 void SomeFunctionThatDoesNothing() {
 }

 void set_some_var(int var) { some_var_ = var; }
 int some_var() const { return some_var_; }

 private:
 bool SomeInternalFunction();

 int some_var_;
 int some_other_var_;
 DISALLOW_COPY_AND_ASSIGN(MyClass);
};

Things to note:

Any base class name should be on the same line as the subclass
name, subject to the 80-column limit.
The public:, protected:, and private: keywords should be indented
one space.
Except for the first instance, these keywords should be preceded by a
blank line. This rule is optional in small classes.
Do not leave a blank line after these keywords.
The public section should be first, followed by the protected and finally
the private section.
See Declaration Order for rules on ordering declarations within each of
these sections.

Cons truc tor In itia lize r Lis ts

Constructor initializer lists can be all on one line or with subsequent lines
indented four spaces.

There are two acceptable formats for initializer lists:

// When it all fits on one line:

13. 1. 8. Google C++ Style Guide

47/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

MyClass::MyClass(int var) : some_var_(var), some_other_var_(var + 1) {}

or

// When it requires multiple lines, indent 4 spaces, putting the colon on
// the first initializer line:
MyClass::MyClass(int var)
 : some_var_(var), // 4 space indent
 some_other_var_(var + 1) { // lined up
 ...
 DoSomething();
 ...
}

Names pace Forma tting

The contents of namespaces are not indented.

Namespaces do not add an extra level of indentation. For example, use:

namespace {

void foo() { // Correct. No extra indentation within namespace.
 ...
}

} // namespace

Do not indent within a namespace:

namespace {

 // Wrong. Indented when it should not be.
 void foo() {
 ...
 }

} // namespace

When declaring nested namespaces, put each namespace on its own line.

namespace foo {
namespace bar {

Hor izonta l Wh ites pace

Use of horizontal whitespace depends on location. Never put trailing
whitespace at the end of a line.

Genera l

void f(bool b) { // Open braces should always have a space before them.
 ...
int i = 0; // Semicolons usually have no space before them.
int x[] = { 0 }; // Spaces inside braces for array initialization are
int x[] = {0}; // optional. If you use them, put them on both sides!
// Spaces around the colon in inheritance and initializer lists.
class Foo : public Bar {
 public:
 // For inline function implementations, put spaces between the braces
 // and the implementation itself.
 Foo(int b) : Bar(), baz_(b) {} // No spaces inside empty braces.
 void Reset() { baz_ = 0; } // Spaces separating braces from implementation.
 ...

13. 1. 8. Google C++ Style Guide

48/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

Adding trailing whitespace can cause extra work for others editing the same
file, when they merge, as can removing existing trailing whitespace. So: Don't
introduce trailing whitespace. Remove it if you're already changing that line, or
do it in a separate clean-up operation (preferably when no-one else is working
on the file).

Loops and Conditiona ls

if (b) { // Space after the keyword in conditions and loops.
} else { // Spaces around else.
}
while (test) {} // There is usually no space inside parentheses.
switch (i) {
for (int i = 0; i < 5; ++i) {
switch (i) { // Loops and conditions may have spaces inside
if (test) { // parentheses, but this is rare. Be consistent.
for (int i = 0; i < 5; ++i) {
for (; i < 5 ; ++i) { // For loops always have a space after the
 ... // semicolon, and may have a space before the
 // semicolon.
for (auto x : counts) { // Range-based for loops always have a
 ... // space before and after the colon.
}
switch (i) {
 case 1: // No space before colon in a switch case.
 ...
 case 2: break; // Use a space after a colon if there's code after it.

Operators

x = 0; // Assignment operators always have spaces around
 // them.
x = -5; // No spaces separating unary operators and their
++x; // arguments.
if (x && !y)
 ...
v = w * x + y / z; // Binary operators usually have spaces around them,
v = w*x + y/z; // but it's okay to remove spaces around factors.
v = w * (x + z); // Parentheses should have no spaces inside them.

T emplates and Cas ts

vector<string> x; // No spaces inside the angle
y = static_cast<char*>(x); // brackets (< and >), before
 // <, or between >(in a cast.
vector<char *> x; // Spaces between type and pointer are
 // okay, but be consistent.
set<list<string>> x; // Permitted in C++11 code.
set<list<string> > x; // C++03 required a space in > >.
set< list<string> > x; // You may optionally use
 // symmetric spacing in < <.

Ver tica l Wh ites pace

Minimize use of vertical whitespace.

This is more a principle than a rule: don't use blank lines when you don't have
to. In particular, don't put more than one or two blank lines between functions,
resist starting functions with a blank line, don't end functions with a blank line,
and be discriminating with your use of blank lines inside functions.

The basic principle is: The more code that fits on one screen, the easier it is to
follow and understand the control flow of the program. Of course, readability
can suffer from code being too dense as well as too spread out, so use your
judgement. But in general, minimize use of vertical whitespace.

13. 1. 8. Google C++ Style Guide

49/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

link ▽

link ▽

Some rules of thumb to help when blank lines may be useful:

Blank lines at the beginning or end of a function very rarely help
readability.
Blank lines inside a chain of if-else blocks may well help readability.

Exceptions to the Rules

The coding conventions described above are mandatory. However, like all
good rules, these sometimes have exceptions, which we discuss here.

Ex is ting Non-conformant Code

You may diverge from the rules when dealing with code that does not
conform to this style guide.

If you find yourself modifying code that was written to specifications other than
those presented by this guide, you may have to diverge from these rules in
order to stay consistent with the local conventions in that code. If you are in
doubt about how to do this, ask the original author or the person currently
responsible for the code. Remember that consistency includes local
consistency, too.

Windows Code

Windows programmers have developed their own set of coding
conventions, mainly derived from the conventions in Windows headers and

other Microsoft code. We want to make it easy for anyone to understand your
code, so we have a single set of guidelines for everyone writing C++ on any
platform.

It is worth reiterating a few of the guidelines that you might forget if you are used
to the prevalent Windows style:

Do not use Hungarian notation (for example, naming an integer iNum).
Use the Google naming conventions, including the .cc extension for
source files.
Windows defines many of its own synonyms for primitive types, such as
DWORD, HANDLE, etc. It is perfectly acceptable, and encouraged, that you
use these types when calling Windows API functions. Even so, keep as
close as you can to the underlying C++ types. For example, use const
TCHAR * instead of LPCTSTR.
When compiling with Microsoft Visual C++, set the compiler to warning
level 3 or higher, and treat all warnings as errors.
Do not use #pragma once; instead use the standard Google include
guards. The path in the include guards should be relative to the top of
your project tree.
In fact, do not use any nonstandard extensions, like #pragma and
__declspec, unless you absolutely must. Using __declspec(dllimport)
and __declspec(dllexport) is allowed; however, you must use them
through macros such as DLLIMPORT and DLLEXPORT, so that someone
can easily disable the extensions if they share the code.

However, there are just a few rules that we occasionally need to break on
Windows:

Normally we forbid the use of multiple implementation inheritance;
however, it is required when using COM and some ATL/WTL classes.
You may use multiple implementation inheritance to implement COM or
ATL/WTL classes and interfaces.
Although you should not use exceptions in your own code, they are
used extensively in the ATL and some STLs, including the one that
comes with Visual C++. When using the ATL, you should define
_ATL_NO_EXCEPTIONS to disable exceptions. You should investigate
whether you can also disable exceptions in your STL, but if not, it is OK

13. 1. 8. Google C++ Style Guide

50/50google-styleguide.googlecode.com/svn/trunk/cppguide.xml

to turn on exceptions in the compiler. (Note that this is only to get the STL
to compile. You should still not write exception handling code yourself.)
The usual way of working with precompiled headers is to include a
header file at the top of each source file, typically with a name like
StdAfx.h or precompile.h. To make your code easier to share with other
projects, avoid including this file explicitly (except in precompile.cc), and
use the /FI compiler option to include the file automatically.
Resource headers, which are usually named resource.h and contain
only macros, do not need to conform to these style guidelines.

Parting Words

Use common sense and BE CONSISTENT.

If you are editing code, take a few minutes to look at the code around you and
determine its style. If they use spaces around their if clauses, you should,
too. If their comments have little boxes of stars around them, make your
comments have little boxes of stars around them too.

The point of having style guidelines is to have a common vocabulary of coding
so people can concentrate on what you are saying, rather than on how you
are saying it. We present global style rules here so people know the
vocabulary. But local style is also important. If code you add to a file looks
drastically different from the existing code around it, the discontinuity throws
readers out of their rhythm when they go to read it. Try to avoid this.

OK, enough writing about writing code; the code itself is much more interesting.
Have fun!

Revision 3.231

Benjy Weinberger
Craig Silverstein

Gregory Eitzmann
Mark Mentovai

Tashana Landray

